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Critical behaviour of a long-range non-equilibrium system 
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Abstract. The critical behaviour of a long-range, onedimensional nonquilibrium system 
where the desorption rate decreases with distance as some power - is studied by means 
of the coherent anomaly method. The cr-dependence of the critical parameter Ac and the critical 
exponent ,6 is determined. 

1. Introduction 

The simplest examples of non-equilibrium critical systems are lattice models where a 
binary site variable evolves according to certain dynamic rules depending on the state 
of the sites closely neighbouring a given site. Models like the contact process, the A- 
model and variations of these [I], arise in fields such as the propagation of epidemics, 
the spreading of a liquid through porous media, and processes of adsorption4esorption of 
particles on a surface; they all exhibit phase transitions into an absorbing state and belong 
to the universality class of directed percolation. 

A variety of methods have been used to study these systems, ranging from cluster mean- 
field theories, MC simulations and series expansions [I]  to RG methods [2] and 6 expansions 
in reggeon field theories 14, 51. The coherent anomaly method (CAM) was also applied to 
these systems [6,7]; more recently [SI an implementation of CAM by means of a series of 
cluster approximations (which improve on the previous ones by appropriately considering 
higher degree correlations) led to rather good estimates of the critical parameter and critical 
exponents for the one-dimensional A-model. 

All the models referred to above have in common the fact that they obey dynamic rules 
which are local, i.e. only nearest neighbours are envolved. However a more realistic model 
for the spreading of an infection is to consider an infection probability which decreases 
with distance like some power Fe-", as proposed by Grassberger [5]. The dynamic rules 
for such model are no longer local which increases enormously the computer time required 
for numerical simulations, as seen in other systems with long-range interactions [9]. The,, 
difficulties envisaged have, naturally, enhibited the investigation of these long-range effects 
and the only results we are aware of are the ones obtained by Grassberger himself using 
<-expansion expressions for the critical exponents (with E = do - d ,  where d, = 2cu is 
the upper critical dimension). The investigation of non-equilibrium phase transitions faces 
aditional difficulties as compared with the case of equilibrium systems, which have therefore 
been more widely studied; this happens with the one-dimensional long-range king system, 
for which a few exact results are known [3]. 

In this paper we consider a long-range, non-equilibrium system in one dimension and 
study it by the coherent anomaly method. A similar study of the long-range onedimensional 
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king system has been performed by Monroe eta1 [IO]. In both cases the method relies on 
a comparison of results for a sequence of mean-field like approximations: these are easily 

Hamiltonian; in the former case, one studies the stationary solutions of the master equation 
for the time evolution of the probability of L-site clusters configurations, in the manner 
used before for the short-range case [SI. A set of different values of a! between 0 and 2 
is considered allowing for an investigation of the a-dependence of critical parameters and 
exponents. This dependence is then compared with the field-theory predictions according 
to which mean-field l i e  exponents are to be expected for 0 c a! c 0.5 and short-range 
(contact-process) critical behaviour is predicted for a > 2. 

In section 2 the dynamic rules for the system are presented together with the method of 
study and the sequence of cluster mean-field approximations. In section 3 the CAM estimates 
for the critical parameter and the critical exponent B are displayed; the results shown in 
subsection 3.2 were obtained by using higher-degree mean-field like approximations (in 
the spirit of [8]). The computer time required in that case was considerably higher than 
that needed for the approximations considered in subsection 3.1. In section 4 results of a 
computer simulation for a system of fixed size and a single value of 01 are presented and 
compared to the CAM estimates of subsection 3.1. Finally, section 5 contains a discussion 
of the results and some concluding remarks. 

2. The model and the method of study 

2.1. The model 

We consider a ID array of sites in which a variable ui takes the values 0 or 1 , corresponding 
to site i being vacant or occupied by a particle. The rate of deposition is A (provided the 
site where deposition is attempted is found to be vacant) and the rate of desorption is 

M C Marques and A L Ferreira 

constructed for the latter, where the equilibrium probability distribution relates to the king 

The rate of desorption is then dependent on the number of vacant sites and their 
respective distance to the chosen site. One can see that considering only the nearest- 
neighbour terms ( j  = i - 1 and j = i + 1) in the summand just corresponds to the 
desorption rates for the contact process: rate 2 if both neighbours are vacant, rate 1 if only 
one neighbour is vacant and no desorption if both are occupied. Of course. one expects the 
short-range case to be recovered for a sharp decrease with distance (a  2) of the other 
terms in the summand. 

2.2. The method 

Suzuki's coherent anomaly method 1111 (CAM) relies on a sequence of mean-field like 
approximations obtained self-consistently with clusters of increasing size L. In the present 
non-equilibrium system, the order parameter of the transition is the fraction of vacant sites, 
p ,  which is zero above a certain critical value & and behaves like p - (& - A)B for 
A < Ac. Within the L-size cluster approximation the order parameter pr. vanishes at A: as 
p~ - A'(A: - A)#", where BMF = 1 is the mean-field exponent. The basic assumption 
of CAM relates the size dependence of the amplitude Ar with the true exponent 0, in the 
following manner: 

AL - ( A t  - 
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or, with the inclusion of first-order corrections 

AI. = a().: ~ A\.,)B-8" + b(At - Ac)s-h+' 

A," = Ac + a'L-O + b'L-* 

(1) 

and the critical parameter value, A,, can be obtained by a fitting of the form 

(2) 

where the last term is a correction to the leading L-O term. In a manner typical of finite 
systems, w is usually the inverse of V I ,  the critical exponent of the correlation length 
[I] ,  141; however, this also depends on the nature of the approximation [12], as seems to 
be the case in the series of approximations described in subsection 2.3.1. The underlying 
relation between w and l / v ~  still needs to be clarified. 

2.3. The cluster mean-field approximations 

2.3.1. Approximation A. The self-consistent approximations which are most easily 
implemented in this system are obtained in the following way: 

A master equation for the time evolution of the probability of a L(odd)-site cluster 
P L ( ~ ,  ..., , UL, t )  is written, where the conwibution for the desorption rates coming from 
the sites inside the cluster are treated exactly, whereas the probability of any site outside the 
cluster to be vacant is set equal to m, independently of the correlations with its neighbours. 
We then look at stationarity and impose selfconsistently that the average value of the central- 
site variable must equal m .  The equation is then solved numerically and the values of A: 
and AL are obtained. 

2.3.2. Approximation B. We have also considered another sucession of higher-degree, 
mean-field approximations (which, however, take much more computer time to be 
implemented). They improve on the previous ones in the sense that the correlations in 
the boundaries of the clusters are more appropriately treated. The master equation for 
&(q, ..., UL, r) depends upon the conditional probabilities P(oj/al, ..., OL, t ) .  where j 
denotes a site outside of the cluster. Approximation A (subsection 2.3.1) corresponds to 
take this conditional probability equal to the average (r value of the central site. A more 
complete approximation can however be used if we estimate the conditional probability 
from &(q, ..., UL, t )  in the spirit of what was done in 181 and 1131. The approximation is 
thus improved for the conditional probabilities of sites j whose distance to the end sites of 
the cluster is less than L ( l j  - 11 c L or I j - LI .c L). For more distant sites there is no way 
of including the correlations with the cluster sites, even approximately, and approximation 
(subsection 2.3.1) is used with m self-consistently equal to the average fraction of vacant 
sites, p( t ) .  

3. Results of CAM 

3.1. Results obtainedfrom approximation A 

In table 1 and table 2 we list the values of Af and AL obtained for the different values of 
a. They were obtained by numerically solving the self-consistent equations of 2.3.1 and 
fitting pairs of (A, p )  values (very close to the transition) to the form 
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Table 1. The parameter Af as obtained for different cluster sizes and different values of U. 
within approximation A (subsection 2.3.1). 

a 

L 0.25 0.5 0.75 I .o 2.0 

3 8.5378123 4.8746367 3.5176144 2.8265817 1.8209414 
5 8.4700124 4.7595828 3,367 1712 2.651 4345 1.606 1686 
7 8.4347714 4.697 2635 3.284 1988 2.554 3626 1.489 7717 
9 8.4127116 4.657 1751 3,2302286 2.491 0826 1.415 1884 

I 1  8.397 3991 4.628 7842 3.191 7143 2.445 8819 1.362 6436 
13 8.3860452 4.6073993 3,1625417 2.411 6353 1.3232852 

Table 2. The parameter Ar as obtained for different cluster sizes and different values of a, 
within approximation A (subsection 2.3.1). 

a 

L 0.25 0.5 0.75 1.0 2.0 

3 0.120 032 0.217 895 0.313088 0.402379 0.678731 
5 0.122230 0.230 056 0.345277 0.463 151 0.880 362 
7 0.123481 0.237847 0.367695 0.508 167 1.048 958 
9 0.124319 0.243 509 0.384959 0.544362 1.196256 

11 0.124 933 0.247 925 0.399 038 0.574 860 1.328 408 
13 0.125409 0.251529 0.410947 0.601331 1.449102 

Table 3. ,& and w as obtained from fitting (2) with I = 2, and using approximation A 
(subsection 2.3.1): A: = A, +aLWW +bL-l.  for different valuer of a. The estimated errors for 
.Is and w are respectively 0.002 and 0.01. 

U L W  

0.25 8.287 0.66 
0.5 4.395 0.59 
0.75 2.862 0.57 
1.0 2.060 0.57 
2.0 0.965 0.64 

A fit of the form (2) was then done in order to determine hc, for the different values of a. 
Better results were obtained using a constant value of x = 2, thus reducing the number of 

Table4. p(u) asobtained fromthe firting: AL = ~ ( A , L - A , ) B - ' C ~ ( A ~ - - I , ) B + ~ ( ~ ~ - , & ) B + ' ,  
and using approximation A (subsection 2.3.1). 

0.25 0.99 
0.5 0.91 
0.75 0.76 
1.0 0.60 
2.0 0.26 
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Figure 1. (a) Ac(a)  as obtained from CAM. (b) p(a)  as obtained from CAM. The result of 
computer simulations for a = 0.75 is represented by 0. 

free parameters. In table 3 we list the values of A, and o obtained in this manner. 
The exponent B was then estimated by fitting A L  to the form (1); better results were 

indeed obtained by considering also higher-order corrections. The results are listed in 
table 4. 

In figure l ( a )  and 1(b) we have plotted A&) and @(a) as obtained from the above 
CAM estimates. Improvement of the results is expected if bigger clusters are considered. 

3.2. Results obtainedf” approximation B 

The implementation of this approximation is more demanding on computer time, therefore 
we have restricted our study to just one case: a = 2.0. Fits were then obtained using the 
procedure described above in subsection 3.1. 

In table 5 we list the values of ht  and AL.  for cluster sizes up to L = 9. The value 
of o obtained within this approximation is 0.91, very close to the best estimates for 1 / v ~  
in the short-range case; however the values of h, and ,3 obtained here-0.977 and 0.31, 
respectivel-are slightly above the estimates of 3.1 for OL = 2.0. This may be a consequence 
of lower precision in the estimates for L = 8,9; bigger cluster sizes were not considered 
due to computer time limitations. 
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Table 5. A t  and AL for different cluster sizes obtained using approximation B (subsection 2.3.2) 
for = m 

L Ak A L  

3 1.3658157 1.297328 
4 1.2630742 1.660435 
5 1.2040731 1.989729 
6 1.1657804 2.293197 
7 1.13889% 2.576217 
8 1.1189671 2.84241 
9 1.1035808 3.09491 

4. Results of computer simulations 

As mentioned before, computer simulations for these long-range systems are extremely 
demanding on computer time. Steady-state simulations of short-range non-equilibrium 
systems close to an absorbing state are already very costly because of critical slowing down 
and the fact that small systems enter quickly the absorbing state even in the supercritical 
region, thus requiring the observation of large systems for a long time; and, of course, one 
needs to average over a large number of samples to obtain a good statistics. 

Just for comparison and for an awareness of these limitations, we show here some 
preliminary results of a computer simulation done on a system of size L = 1000, for 
01 = 0.75. The size of the system prevented us f" obtainig results very close to the 
critical point, as this would require a very great number of realizations to allow for a few 
not to enter the absorbing state. 

In figure 2 we show a log-log plot of the steady concentration of vacant sites p versus 
Ac - A for A, = 2.825. The slope of the line is B = 0.758 . For comparison we have also 
displayed these simulation results for A, and ,3 in figure l(a) and (b) .  

To obtain a better statistics on bigger systems and for different values of 01 would 
certainly be desirable. However this is certainly a difficult task when one considers that 
20 realizations of this system for one value of A took about 240 hr of CPU time on a 

e 
4.7 ""I 

1 t 
4.9 .0.8 4.7 -Ob 43 44 43 -9.2 .0.1 

lol(La%LMM.l 

Figure 2. Log-log plot of the order parameter vwus A, - A  , as obtained from camputer 
simulations of a system of size L = 1000. 
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HP720 workstation. 

5. Discussion and concluding remarks 

The use of CAM has enabled us to study the a -dependence of the critical parameter I, and 
the critical exponent p in a long-range, non-equilibrium system, for which other methods 
used in short-range, non-equilibrium systems face great difficulties. 

According to field theory [SI, the upper critical dimensionality is d, = 2a. so the 
dimensionality d = 1 of our system is above d, for a < 0.5, and the mean-field critical 
exponent pm = 1 should be expected in this case; on the other hand, it is predicted that 
the short-range critical behaviour should be recovered for a 2 2. 

= 0.910 for a = 0.5 
(where some logarithmic corrections might be expected, since d = dc); so the results seem 
quite reasonable and are likely to be improved if bigger clusters are used. 

As for the case of a = 2.0, we obtain p = 0.26 for approximation A; consideration of 
larger cluster sizes is expected to increase the estimate, and therefore this is consistent with 
the value p = 0.277 for the (short-range) contact process. 

The analysis of the results for approximation B poses some questions. Indeed, the best 
fit for Ac not only is slightly above the value obtained from approximation A, but also when 
used to obtain p, it gives estimates above the short-range value p = 0.277. However, a 
slightly lower value of A, already gives estimates consistent with the short-range value; 
this difficulty may be eliminated if more computer time is dispended in attaining higher 
accuracy. Interestingly, even though the reason might not be very clear at the moment, 
thii approximation gives an estimate for o consistent with the short-range value for l / u ~ .  
Further study is required to clarify these points. 

One clear advantage of this approach is the fact that one is not limited by small 
6 = 2a - 1, as in the first-order e-expansion expressions for the critical exponents. 
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